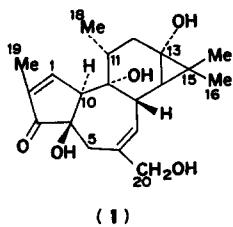


NEW DIESTERS OF 12-DEOXY-PHORBOL

F. J. EVANS and A. D. KINGHORN

The School of Pharmacy (University of London), 29-39, Brunswick Square, London, WC1N 1AX, England


(Received 7 February 1975)

Key Word Index—*Euphorbia* species; Euphorbiaceae; 12-deoxyphorbol esters; diterpene.

12-Deoxy-phorbol esters are potent toxins which produce severe inflammation of the skin [1]. They are therefore of interest in the study of the complex biochemical sequences involved in the inflammatory process in mammals [2]. Their occurrence in *Euphorbia* species is of particular interest in this respect due to a recent failure to synthesize the 12-deoxy-phorbol series of irritants from the phorbol series [3]. We wish to report the isolation of three new irritant diesters of 12-deoxy-4 β OH-phorbol which occurred as only minor components of a complex mixture of known esters [2,4] from the latex of *Euphorbia* species.

Plant material. *E. coerulescens*; *E. fortissima*; *E. polyacantha*.

Present work. Approximately 10 ml fresh latex was used for the isolations. The irritants were extracted and purified by a combination of solvent partition, column chromatography and TLC as previously described [4]. Final purification was by preparative TLC on Si gel (500 μ m layers activated at 120° for 1 hr after buffering at pH 7.0) developing with $\text{CHCl}_3\text{-C}_6\text{H}_6\text{-Et}_2\text{O}$ (1:3:3) as solvent. Clear glassy resins were produced which failed to crystallize from several solvents, but which were homogeneous by TLC [5] and MS.

The resins had similar IR spectra (ν_{max} , 3385, 1725, 1705, 1695 and 1630 cm^{-1} , solvent CHCl_3)

and CD spectra (negative cotton effects at 272 and 360 nm, solvent MeOH). Hydrolysis [Ba(OH)_2 in MeOH under N_2] afforded a common parent alcohol (1) in *ca* 40% yield. This alcohol was unstable and was converted to its diacetate [6] before recrystallising from Me_2CO (mp 138°). The NMR spectrum (60 MHz, CDCl_3 ; TMS = 0.00 ppm) exhibited signals at δ 0.89 *d* (*J* 4 Hz, 3H-18, H-14); δ 1.16 *d* (*J* 8 Hz, 6H-16, 17); δ 1.80 *d* (*J* 2.1 Hz, 3H-19); δ 2.05 (6H-Me-CO-); δ 2.18 *s* (2H-12); δ 2.44 *s* (2H-5); δ 3.02 *m* (H-8); δ 3.29 *m* (H-10); δ 4.47 *s* (2H-20); δ 5.75 *d* (*J* 4.3 Hz, H-7); δ 7.64 *s* (H-1); δ 2.47 and δ 5.58 (2-OH-deuterium exchange). The MS exhibited a molecular ion at *m/e* 432 ($\text{M}^+ \text{C}_{24}\text{H}_{32}\text{O}_7$) with significant fragment ions at *m/e* 414 (M-18); 372 (M-60); 354 (M-60 + 18); 336 (M-36 + 60); 312 (M-120); 294 (M-120 + 18) in the upper region of the spectrum. The TLC [5] and GLC [6] data were identical to 12-deoxy-4 β OH-phorbol-13,20-diacetate.

Ester A: 12-deoxy-4 β OH-phorbol-13-dodecanoate-20-acetate. This resin (10 mg) was isolated from latex of *E. coerulescens*. It had an *R_f* value of 0.8 in the system above, and produced an orange fluorescence under UV light after spraying with 60% H_2SO_4 and heating. Most of the signals in the NMR spectrum could be characterized as arising from the parent alcohol [7]. In addition, it had 3H signal at δ 0.89 and an 18H, *s* at δ 1.27, a 2H triplet at δ 2.32 and one acetate at δ 2.05. The MS *m/e* 572 ($\text{M}^+ \text{C}_{34}\text{H}_{52}\text{O}_2$) and prominent fragment ions at *m/e* 512 (M-60); 372 (M-200); 312 (M-60 + 200); 294 (M-60 + 200 + 18). Transesterification in 0.5 M KOH in MeOH at room temp. produced a low *R_f* value mono-ester. [$\text{M}^+ \text{C}_{32}\text{H}_{50}\text{O}_6$ at *m/e* 530, fragment ions by MS at *m/e* 512 (M-18); 494 (M-36); 330 (M-

200); 312 (M-200 + 18).] Acetylation of the mono-ester produced a compound identical by TLC and MS to *ester A*. Hydrolysis in Ba(OH)₂ followed by methylation and GLC[8] confirmed the presence of dodecanoic acid.

Ester B: 12-deoxy-4 β OH-phorbol-13-dodecanoate-20-acetate. Resin B (5 mg: R_f value 0.75, orange by UV as before) was isolated from *E. fortissima* latex. The NMR spectrum as before suggested the presence of acetic and dodecanoic acids as esterifying moieties at C-20 and C-13 of (1). In the MS the resin had an M^+ ion at m/e 570 ($M^+ C_{34}H_{50}O_7$) and fragment ions at m/e 510 (M-60); 494 (M-60 + 18); 372 (M-198); 312 (M-198 + 60); 294 (M-198 + 60 + 18). Transesterification produced a mono-ester [$M^+ C_{32}H_{48}O_6$, at m/e 528 and fragment ions by MS at m/e 510 (M-18); 492 (M-36); 330 (M-198); 312 (M-198 + 18)]. Acetylation of the mono-ester produced *ester B*. After complete hydrolysis dodecanoic acid was identified by GLC as before.

Ester C: 12-deoxy-4 β OH-phorbol-13-octenoate-20-acetate. This ester (1.5 mg) was isolated from *E. polyacantha* (R_f value 0.72, orange by UV as before). It exhibited a molecular ion in the MS at m/e 514 ($M^+ C_{30}H_{42}O_7$) and fragment ions at m/e 372 (M-142); m/e 454 (M-60); m/e 312 (M-60 + 142); m/e 294 (M-60 + 142 + 18). Transesterification produced a mono-ester. (MS exhibited

M^+ at m/e 472, $C_{28}H_{40}O_6$, and fragment ions at m/e 454 (M-18); 436 (M-36); 330 (M-142). Octenoic acid was identified by GLC after hydrolysis. Acetylation of the mono-ester produced *ester C*.

For *esters B* and *C* no attempt was made to assign the position of the double bond in the side chain. From a chemotaxonomic point of view it was of interest to note that these three succulent *Euphorbia* species, which are indigenous to Africa, all contained esters of the same parent alcohol (1).

REFERENCES

1. Hecker, E. (1971) *Phytochemistry and Pharmacognosy* (Wagner, H. and Hörhammer, eds.), pp. 147-165. Springer, Berlin.
2. Evans, F. J., Kinghorn, A. D. and Schmidt, R. J. (1975) *Acta Pharmacol. Toxicol.* (in press); Spector, W. G. and Willoughby, D. A. (1968) *The Pharmacology of Inflammation*. English Universities Press, London.
3. Hecker, E. and Schmidt, R. (1974) *Progress in the Chemistry of Organic Natural Products* (Herz, W., Grisebach, N. and Kirby, E. W., eds.), Vol. 31, p. 377. Springer, Vienna.
4. Kinghorn, A. D. and Evans, F. J. (1975) *J. Pharm. Pharmacol.* **27**, 329.
5. Evans, F. J. and Kinghorn, A. D. (1973) *J. Chromatog.* **87**, 443.
6. Kinghorn, A. D. and Evans, F. J. (1974) *J. Pharm. Pharmacol.* **26**, 408.
7. Gschwendt, M. and Hecker, E. (1969) *Tetrahedron Letters* **40**, 3509.
8. Evans, F. J. (1973) *J. Pharm. Pharmacol.* **25**, 156.

Phytochemistry, 1975, Vol. 14, pp. 1670-1671. Pergamon Press. Printed in England.

DITERPENES FROM THREE *SIDERITIS* SPECIES*

BENJAMÍN RODRÍGUEZ and SERAFÍN VALVERDE

Instituto de Química Orgánica General, C.S.I.C. Juan de la Cierva, 3. Madrid-6. Spain
and

RAFAEL CUESTA and ANTONIO PEÑA

Departamento de Química Orgánica, Universidad Autónoma de Madrid

(Received 24 January 1975)

Key Word Index—*Sideritis chamaedryfolia*; *S. hyssopifolia*; *S. luteola*; Labiate; *ent*-15-kaurene and *ent*-16-kaurene derivatives.

Plants. *Sideritis chamaedryfolia* Cav., *Sideritis hyssopifolia* L. and *Sideritis luteola* Font Quer.
Sources. Near Villena (Alicante), Puerto de Pajares (León) and Sierra de Filabres (Almería),

* Part 24 in the series *Constituents of Sideritis*. For part 23 see Von Carstenn-Lichterfelde, C., Panizo, F. M., Quesada, T. G., Rodriguez, B., Valverde, S., Ayer, W. A. and Ball, J.-A. H. *Can. J. Chem.* (in press).